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Supplementary Figure 1 Distribution of depths of the leaf annotations, over all benchmarks in
(A) Molecular Function ontology, (B) Biological Process ontology, (C) Cellular Component ontology
and (D) Human Phenotype ontology. A leaf term for a benchmark protein is defined as any term
whose descendant nodes (more specific nodes) are not among the experimentally determined terms
for that protein.
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Supplementary Figure 2 The histogram and boxplot of total information content of benchmark
proteins as well as all experimentally annotated proteins at time t1; i.e., the point of benchmark col-
lection: (A) Molecular Function ontology, (B) Biological Process ontology, (C) Cellular Component
ontology, and (D) Human Phenotype ontology. The information content of each directed acyclic
graph was calculated according to [9]. The red point in each plot indicates the value of information
content for the predicted annotation corresponding to the Naive baseline model.

Supplementary Figure 2A:
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Supplementary Figure 2B:

Supplementary Figure 2C:
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Supplementary Figure 2D:
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Supplementary Figure 3 The histogram of pairwise sequence identities between each benchmark
proteins and the experimentally annotated template most similar to it: (A) Molecular Function
ontology, (B) Biological Process ontology, and (C) Cellular Component ontology. The histograms
roughly determine two groups of benchmarks: easy – with maximum global sequence identity greater
than or equal to 60%, and difficult – with maximum global sequence identity below 60%.
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Supplementary Figure 4 Precision-recall curves for the top-performing methods for (A) Molecu-
lar Function ontology, (B) Biological Process ontology, (C) Cellular Component ontology and (D)
Human Phenotype ontology. All panels show the top ten participating methods in each category, as
well as the Näıve and BLAST baseline methods. Points corresponding to the maximum F-measure
are marked in circles on each curve. The legend provides the maximum F-measure (F ) and coverage
(C) for all methods. In cases where a Principal Investigator (PI) participated with multiple teams,
only the results of the best scoring method are presented.

Supplementary Figure 4A:
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Supplementary Figure 4B:

Supplementary Figure 4C:
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Supplementary Figure 4D:
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Supplementary Figure 5 Precision-recall curves for the top-performing methods for (A) easy
benchmark category and Molecular Function ontology, (B) difficult benchmark category and Molec-
ular Function ontology, (C) easy benchmark category and Biological Process ontology, (D) difficult
benchmark category and Biological Process ontology, (E) easy benchmark category and Cellular
Component ontology and (F) difficult benchmark category and Cellular Component ontology. All
panels show the top ten participating methods in each category, as well as the Näıve and BLAST
baseline methods. Points corresponding to the maximum F-measure are marked in circles on each
curve. The legend provides the maximum F-measure (F ) and coverage (C) for all methods. In cases
where a Principal Investigator (PI) participated with multiple teams, only the results of the best
scoring method are presented.
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Supplementary Figure 5A (easy):

Supplementary Figure 5B (difficult):
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Supplementary Figure 5C (easy):

Supplementary Figure 5D (difficult):
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Supplementary Figure 5E (easy):

Supplementary Figure 5F (difficult):
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Supplementary Figure 6 Precision-recall curves for the top-performing methods for (A) eukary-
otic benchmark category and Molecular Function ontology, (B) prokaryotic benchmark category and
Molecular Function ontology, (C) eukaryotic benchmark category and Biological Process ontology,
(D) prokaryotic benchmark category and Biological Process ontology, (E) eukaryotic benchmark
category and Cellular Component ontology and (F) prokaryotic benchmark category and Cellular
Component ontology. All panels show the top ten participating methods in each category, as well
as the Näıve and BLAST baseline methods. Points corresponding to the maximum F-measure are
marked in circles on each curve. The legend provides the maximum F-measure (F ) and coverage
(C) for all methods. In cases where a Principal Investigator (PI) participated with multiple teams,
only the results of the best scoring method are presented.
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Supplementary Figure 6A (eukarya):

Supplementary Figure 6B (prokarya):
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Supplementary Figure 6C (eukarya):

Supplementary Figure 6D (prokarya):
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Supplementary Figure 6E (eukarya):

Supplementary Figure 6F (prokarya):
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Supplementary Figure 7 Performance evaluation based on the maximum F-measure for the top-
performing methods for the Molecular Function ontology (A–F), Biological Process ontology (G–O),
and Cellular Component ontology (P–V). Only the species with 15 benchmark proteins or more are
included. All bars show the top ten participating methods as well as the Näıve and BLAST baseline
methods. A perfect predictor would be characterized with Fmax of 1. Confidence interval (95%)
were determined using bootstrapping with 10,000 iterations on the set of target sequences.
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Supplementary Figure 7A (Arabidopsis thaliana):

Supplementary Figure 7B (Escherichia coli K12):
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Supplementary Figure 7C (Homo sapiens):

Supplementary Figure 7D (Mus musculus):
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Supplementary Figure 7E (Pseudomonas aeruginosa):

Supplementary Figure 7F (Rattus norvegicus):
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Supplementary Figure 7G (Arabidopsis thaliana):

Supplementary Figure 7H (Danio rerio):
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Supplementary Figure 7I (Dictyostelium discoideum):

Supplementary Figure 7J (Drosophila melanogaster):
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Supplementary Figure 7K (Escherichia coli K12):

Supplementary Figure 7L (Homo sapiens):
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Supplementary Figure 7M (Mus musculus):

Supplementary Figure 7N (Pseudomonas aeruginosa):
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Supplementary Figure 7O (Rattus norvegicus):
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Supplementary Figure 7P (Arabidopsis thaliana):

Supplementary Figure 7Q (Drosophila melanogaster):
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Supplementary Figure 7R (Escherichia coli K12):

Supplementary Figure 7S (Homo sapiens):

28



Supplementary Figure 7T (Mus musculus):

Supplementary Figure 7U (Rattus norvegicus):
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Supplementary Figure 7V (Saccharomyces cerevisiae):

30



Supplementary Figure 8 Weighted precision-recall curves for the top-performing methods for (A)
Molecular Function ontology, (B) Biological Process ontology, (C) Cellular Component ontology
and (D) Human Phenotype ontology. All panels show the top ten participating methods in each
category, as well as the Näıve and BLAST baseline methods. Points corresponding to the maxi-
mum weighted F-measure are marked in circles on each curve. The legend provides the maximum
weighted F-measure (F ) and coverage (C) for all methods. In cases where a Principal Investigator
(PI) participated with multiple teams, only the results of the best scoring method are presented.

Calculation of the weighted precision-recall curve. Each term f in the ontology was weighted
according to the information content of that term. The information content of the term f was
calculated as

ic(f) = log2

1

Pr (f |P(f))
,

where Pr (f |P(f)) is the probability that the term f in the ontology is associated to a protein given
that all of its parents are associated. (probabilities were determined based on the union of Swiss-
Prot, UniProt-GOA and GO Consortium databases). Weighted precisions and recalls are calculated
as

wpr(τ) =
1

m(τ)

m(τ)∑
i=1

∑
f ic(f) · 1 (f ∈ Pi(τ) ∧ Ti(τ))∑

f ic(f) · 1 (f ∈ Pi(τ))
, and

wrc(τ) =
1

ne

ne∑
i=1

∑
f ic(f) · 1 (f ∈ Pi(τ) ∧ Ti(τ))∑

f ic(f) · 1 (f ∈ Ti(τ))
,

where Pi(τ) is the set of predicted terms for protein i with score no less than threshold τ and Ti
is the set of true terms for protein i, m(τ) is the number of sequences with at least one predicted
score greater than or equal to τ , and ne is the number of proteins used in a particular mode of
evaluation. In the full evaluation mode ne = n, the number of benchmark proteins, whereas in the
partial evaluation mode ne = m(0).
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Supplementary Figure 8A:

Supplementary Figure 8B:
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Supplementary Figure 8C:

Supplementary Figure 8D:
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Supplementary Figure 9 Normalized remaining uncertainty-misinformation curves for the top-
performing methods for (A) Molecular Function ontology, (B) Biological Process ontology, (C)
Cellular Component ontology and (D) Human Phenotype ontology. All panels show the top ten
participating methods in each category, as well as the Näıve and BLAST baseline methods. Points
corresponding to the minimum normalized semantic distance [40] are marked in circles on each
curve. The legend provides the minimum normalized semantic distance (S) and coverage (C) for all
methods. In cases where a Principal Investigator (PI) participated with multiple teams, only the
results of the best scoring method are presented.

Calculation of the normalized remaining uncertainty-misinformation curve.

nru(τ) =
1

ne

ne∑
i=1

∑
f ic(f) · 1 (f /∈ Pi(τ) ∧ f ∈ Ti)∑
f ic(f) · 1 (f ∈ Pi(τ) ∨ f ∈ Ti)

, and

nmi(τ) =
1

ne

ne∑
i=1

∑
f ic(f) · 1 (f ∈ Pi(τ) ∧ f /∈ Ti)∑
f ic(f) · 1 (f ∈ Pi(τ) ∨ f ∈ Ti)

,

where Pi(τ) is the set of predicted terms for protein i with score no less than threshold τ and Ti is
the set of true terms for protein i, and ne is the number of proteins used in a particular mode of
evaluation. In the full evaluation mode ne = n, the number of benchmark proteins, whereas in the
partial evaluation mode ne is the number of proteins that have at least one positive predicted score.
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Supplementary Figure 9A:

Supplementary Figure 9B:
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Supplementary Figure 9C:

Supplementary Figure 9D:
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Supplementary Figure 10 Similarity network of participated methods for (A) Molecular Function
ontology, (B) Biological Process ontology, (C) Cellular Component ontology and (D) Human Phe-
notype ontology. For all panels, similarities are computed as the Pearson’s correlation coefficient
between methods with a 0.75 cutoff for illustration purposes. A unique color is assigned to all
methods submitted under the same principal investigator. Not evaluated (organizer’s) methods are
shown in triangles, while benchmark methods (Näıve and BLAST) are shown in squares. Top 10
methods are highlighted with enlarged nodes and circled in red. Edge width indicates the strength
of similarity. Nodes are labelled with the name of methods followed by “team-model” if multiple
teams/models are submitted.
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Supplementary Figure 10A:
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Supplementary Figure 10B:
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Supplementary Figure 10C:
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Supplementary Figure 10D:
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Supplementary Figure 11 The barplot of keyword frequency self-annotated by CAFA2 top 10
methods of (A) Molecular Function ontology, (B) Biological Process ontology, and (C) Cellular
Component ontology. The barplot of keyword enrichment self-annotated by CAFA2 top 10 methods
against all submitted methods of (D) Molecular Function ontology, (E) Biological Process ontology,
and (F) Cellular Component ontology. Keyword enrichment was calculated as log-ratio of:

e(k) = log
1
10

∑10
i=1 1(k ∈ Ki)

1
n

∑n
i=1 1(k ∈ Ki)

,

where we assume methods are in descending order of their Fmax measure and Ki indicates the set
of self-annotated keywords by model i.
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Supplementary Figure 11A:

Supplementary Figure 11B:
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Supplementary Figure 11C:
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Supplementary Figure 11D:

Supplementary Figure 11E:
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Supplementary Figure 11F:
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Supplementary Table 1. (Part 1) Participating methods grouped according to Principal Investi-
gators (PIs)

Principal Investigator Method Name Model (keyword) Publications
Asa Ben-Hur GOstruct Model 1 (sa,sp,pp,pi,ge,gi,lt,gc,ml,nlp) [36]

Richard Bonneau PULP
Model 1 (ph,sp,pp,pi,ge,ps,pps,dp,ml,or)

[43, 42, 41]
Model 2 (ph,sp,pp,pi,ge,ps,pps,dp,ml)

Steven Brenner SIFTER 2.4 †
Model 1 (ph,ml,or,pa,ho)

[34, 15]Model 2 (ph,ml,or,pa,ho)
Model 3 (ph,ml,or,pa,ho)

Rita Casadio BAR++
Model 1 (sa,spa,pp,pps,ml,ho,hmm)

[4, 32]
Model 2 (sa,spa,pp,pps,ml,ho,hmm)

Jianlin Cheng

ProFun
Model 1 (spa,sp,gi,gc,dp,gd)

[6]Model 2 (spa,dp)
Model 3 (spa,gi,gc,dp,gd)

ProFun/donet
Model 1 (ppa,spa)

[38]Model 2 (ppa,spa)
Model 3 (ppa,spa)

Wyatt Clark Yale
Model 1 (pi)
Model 2 (pi)
Model 3 (pi)

Christophe Dessimoz

GORBI
Model 1 (ml,or,pa,ho,gc)

[35]Model 2 (ml,or,pa,ho,gc)
Model 3 (or,pa,ho,sa,spa,ppa,ph,hmm)

CBRG
Model 1 (or,pa,ho)

[3]Model 2 (or,pa,ho)
Model 3 (or)

Tunca Dogan PANdeMIC Model 1 (sa,ml,ho)

Filip Ginter EVEX
Model 1 (sa,ml,sp)

[37]
Model 2 (sa,ml,sp)

Julian Gough

Gough Lab/GoughGroup
Model 1 (sa,spa,hmm)
Model 2 (pps,hmm)
Model 3 (pi)

Gough Lab/D2P2
Model 1 (pp,sa,spa,hmm)

[30]Model 2 (pp,pi)
Model 3 (pp)

Gough Lab/dcGO
Model 1 (pps,pp,sa,spa,hmm,pi)

[17]Model 2 (pps,pp,sa,spa,hmm,pi)
Model 3 (pps,pp,sa,spa,hmm,pi)

Gough Lab/SUPERFAMILY
Model 1 (pps,pp,sa,spa,hmm,pi)

[14]Model 2 (pi)
Model 3 (pp,sa,spa,hmm)

Gough Lab/dcGOpredictor
Model 1 (pps,sa,spa,hmm,pi)
Model 2 (pps,sa,spa,hmm,pi)

Liisa Holm

SANS
Model 1 (sa)

[24]Model 2 (sa)
Model 3 (sa)

PANNZER
Model 1 (sa,ph,or,pa,ho,nlp,ofi)

[25]Model 2 (sa,ph,or,pa,ho,nlp,ofi)
Model 3 (sa,ph,or,pa,ho,nlp,ofi)

Wen-Lian Hsu IASL
Model 1 (sa,spa,sp)
Model 2 (sa,spa,sp)
Model 3 (sa,spa,sp)

David Jones

Jones-UCL/jfpred-RF Model 1 (hmm,ppa,sp,pi,or,lt,ml)

[11]
Jones-UCL/jfpred-FP

Model 1 (hmm,ppa,sp,pi,or,lt,ml)
Model 2 (sp,pp,pps,ml)
Model 3 (sp,pp,pps,ml)

Jones-UCL/jfpred-PB
Model 1 (hmm,ppa,sp,pi,or,lt,ml)
Model 2 (sa,spa)
Model 3 (hmm,ppa)

†SIFTER is expected to work well on microbial proteins.
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Supplementary Table 1. (Part 2)

Principal Investigator Method Name Model (keyword) Publications

Daisuke Kihara

ESG
Model 1 (sa)

[7]
Model 2 (sa)

CONS Model 1 (sa)

[23]

FPM
Model 1 (sa)
Model 2 (sa)

PFPDB
Model 1 (sa)
Model 2 (sa)

ESGDB
Model 1 (sa)
Model 2 (sa)

PFP
Model 1 (sa)

[22, 21]
Model 2 (sa)

Sean Mooney g2p buck (not evaluated) Model 1 (N/A)

Michal Linial Go2Proto
Model 1 (sa,sp,php,pp,cm,ml,or,pa,ho,ofi)
Model 2 (sa,sp,php,pp,cm,ml,or,pa,ho,ofi)
Model 3 (sa,sp,php,pp,cm,ml,or,pa,ho,ofi)

Yves Moreau

ENDEAVOUR
Model 1 (sa,ph,pi,ge,lt,ml,ofi)

[1]Model 2 (sa,ph,pi,ge,lt,ml,ofi)
Model 3 (sa,ph,pi,ge,lt,ml,ofi)

KernelFusion
Model 1 (sa,pi,ge,lt,ml,ofi)

[44, 13]Model 2 (sa,pi,ge,lt,ml,ofi)
Model 3 (sa,pi,ge,lt,ml,ofi)

Christine Orengo

Orengo-FunFams/MDA
Model 1 (ml)

[12]

Model 2 (sp)
Model 3 (pi)

Orengo-FunFams
Model 1 (spa,ppa,ho,hmm)
Model 2 (spa,ppa,ho,hmm)
Model 3 (spa,ppa,ho,hmm)

Alberto Paccanaro Paccanaro Lab
Model 1 (sa,spa,pi,ge,lt,gc,ml,or.ho)
Model 2 (spa,hmm,ml)

Paul Pavlidis Moirai
Model 1 (ofi)
Model 2 (ofi)
Model 3 (ofi)

Predrag Radivojac FANN-GO (not evaluated)
Model 1 (sa,ml)

[8]Model 2 (sa,ml)
Model 3 (sa,ml)

Burkhard Rost
Rost Lab

Model 1 (sa,spa,ppa,sp,dp,ml)
[18]Model 2 (sa,spa,ppa,sp,dp,ml)

Model 3 (sa,spa,ppa,sp,dp,ml)
Rost Lab/metastudent2 Model 1 (sa,ml,or,pa,ho) [20]

Asaf Salamov COPBP Model 1 (N/A)
Fran Supek PhyloScriptors Model 1 (ph,gc,ml,pa,or)

Weidong Tian Tian Lab
Model 1 (sa)

[19]
Model 2 (sa)

Stefano Toppo Argot2 Model 1 (sa,spa) [16]

Toppo/van Dijk * argot2bmrf
Model 1 (sp,pi,ge,gi,ml,sa,spa)
Model 2 (sp,pi,ge,gi,ml,sa,spa)

Silvio Tosatto INGA-Tosatto Model 1 (hmm,ppa,sa,pi) [31]

Michael Tress SIAM
Model 1 (sa,ho,sp,ps,php,spa,ppa,sta,cm)

[29]Model 2 (ps,php,spa,ppa,sta,cm)
Model 3 (sa,ho,sp)

Hafeez Ur Rehman PFPPipeLine Model 1 (sa,pi,ml,ho,ofi) [5]

Giorgio Valentini Anacleto Lab
Model 1 (ml,sa)

[33]Model 2 (ml,sa)
Model 3 (ml,sa)

Aalt-Jan van Dijk BMRF
Model 1 (sp,pi,ge,gi,ml)

[26, 27]
Model 2 (sp,pi,ge,gi,ml)

Nevena Veljkovic ISM AP
Model 1 (ppa,php)
Model 2 (ppa,php,ge)
Model 3 (ppa,php,ge)

* This is a joint group of Stefano Toppo and Aalt-Jan van Dijk.
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Supplementary Table 1. (Part 3)

Principal Investigator Method Name Model (keyword) Publications
Ricardo Vencio SIFTER-T Model 1 (spa,ml,ho) [2]

Jörg Vogel APRICOT
Model 1 (ho,hmm,ppa,pp)
Model 2 (ho,hmm,ppa,pp)

Slobodan Vucetic MS-kNN
Model 1 (ml,sa,ge)

[28]Model 2 (ml,sa,ge)
Model 3 (ml,sa,ge)

Zheng Wang PANDA
Model 1 (spa,ppa,ph,or,pa,ho)
Model 2 (spa,ppa,ph,or,pa,ho)
Model 3 (spa,ppa,ph,or,pa,ho)

Mark Wass CombFunc Model 1 (spa,sa,ml,ge,pi) [39]
N/A ‡ Blast2GO Model 1 (sa) [10]

‡Blast2GO predictions were downloaded from the website https://www.blast2go.com one week before the prediction
deadline and converted into appropriate submission format by the CAFA organizers.

Supplementary Table 1. (Part 4) Keyword table.

Code Keyword Code Keyword
sa sequence alignment sta structure alignment

spa sequence-profile alignment cm comparative model
ppa profile-profile alignment pps predicted protein structure
ph phylogeny dp de novo prediction
sp sequence properties ml machine learning

php physicochemical properties gne genome environment
pp predicted properties op operon
pi protein interactions or ortholog
ge gene expression pa paralog
ms mass spectrometry ho homolog
gi genetic interactions hmm hidden Markov model
ps protein structure cd clinical data
lt literature gd genetic data
gc genomic context nlp natural language processing
sy synteny ofi other functional information
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